Neural Networks

Saurabh Mathur

Machine Learning

Programming computers to learn from experience should eventually eliminate the need for much of this detailed programming effort. - Arthur Samuel

Machine learning research seeks to develop computer systems that auto matically improve their performance through experience.

- Tom Mitchell

Problem formulation

Task	Experience	Performance
Predict house prices	House attributes and prices	Closeness to correct price (RMSE)
Grouping tweets together	Text content of tweets	Coherent groupings (Within group similarity)
Classify new images as either Cat or Dog	Images of cats & dogs	Accuracy of classification, Cross-entropy

Source: https://factionsandfigures.netlify.com/2017/06/07/machine-learning/

Machine Learning Tasks

- Supervised Learning (We have examples and labels)
 - Classification
 - Regression
- Unsupervised Learning (We only have examples)
 - Topic modeling
 - Clustering
- Semi-Supervised Learning (Some examples have labels)

Supervised Learning

Source: https://blogs.nvidia.com/blog/2018/08/02/supervised-unsupervised-learning/

Supervised learning

- Model
 - A simplified view of the world.
 - Encodes assumptions about the problem.
 - How was the data generated ?
- Learning Algorithm
 - Estimates specifics of the model from data.
- Measure of correctness
 - Loss Function
 - Log Likelihood

Example: Classification

x	x ₂	y (AND function)
0	0	-1
0	1	-1
1	0	-1
1	1	+1

Example: Classification

- Model
 - A line separates the examples : y = ax + b
 - Examples above the line are + others are -
- Measure of correctness
 - Accuracy = #correct / total
 - Error = sum(prediction correct)
- Learning Algorithm ?

The Perceptron

Source: http://www.andreykurenkov.com/writing/ai/a-brief-history-of-neural-nets-and-deep-learning/

The Learning Algorithm

- 1. Set w to [0, 0, .., 0]
- 2. For each example x and output y in dataset:
 - 2.1. Compute prediction, p = Sign(w . x)
 - 2.2. If p ≠ y
 - 2.2.1. For i in 1,..., M

Update, w = w + x * y

Limitations of perceptrons

- Learning converges only if data is linearly separable.
- Does not model uncertainty outputs either 0 or 1.
- Input features should be well-defined.

Linear separability

Source: https://towardsdatascience.com/radial-basis-functions-neural-networks-all-we-need-to-know-9a88cc053448

Multi-layered Perceptron

Source: https://www.cs.utexas.edu/~teammco/misc/mlp/

Learning as error-minimization

- Empirical risk minimization
- Hypothesis **h** : X -> y
- Find **h** by minimizing an error function over training data.

Requirements for direct error-minimization

- Differentiable expression for loss function
- Closed-form solution for minimum (derivative = 0)

Perceptron Loss function

Perceptron uses the Sign function for prediction.

Is this differentiable ?

The Sigmoid Function

Schematic of a logistic regression classifier.

Source: https://en.wikipedia.org/wiki/Sigmoid_function#/

Logistic Regression

Replace Sign with Sigmoid.

$$Loss(w) = \sum_{i=1}^{m} y^{(i)} \log P(y=1) + (1-y^{(i)}) \log P(y=0)$$

Differentiate and solve for w

$$Loss(w) = \sum_{i=1}^{m} y^{(i)} \log P(y=1) + (1-y^{(i)}) \log P(y=0)$$

$$Loss(w) = \sum_{i=1}^{m} y^{(i)} \log\left(\frac{1}{1 + e^{-w^{T}x}}\right) + (1 - y^{(i)}) \log\left(1 - \frac{1}{1 + e^{-w^{T}x}}\right)$$

$$\frac{\partial Loss}{\partial w} = \sum_{i} \left[y_i - \frac{1}{1 + \exp(x'_i w)} \right] x_i = 0$$

There is no closed-form solution

$$\frac{\partial Loss}{\partial w} = \sum_{i} \left[y_i - \frac{1}{1 + \exp(x'_i w)} \right] x_i = 0$$

Newton's Method to find zero-point

Source: https://brilliant.org/wiki/newton-raphson-method/

Newton's Method for minimization

• Find zero-point of derivative.

$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)}$$

Gradient Descent for minimization

• Second derivative is expensive

$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)}$$
$$x_{n+1} = x_n - \eta f'(x_n)$$

Stochastic Gradient Descent

• Approximate derivative using single example

$$x_{n+1} = x_n - \eta f'(x_n)$$

$$\sum_{i=1}^{N} \frac{\partial Loss(x_i, y, w_n)}{\partial w_n} \simeq N * \frac{\partial Loss(x_i, y, w_n)}{\partial w_n}$$

Extensions of SGD : Selecting LR

- ADAM
- RMSProp
- Adagrad
- Adadelta

http://ruder.io/optimizing-gradient-descent/index.html

"Shallow" Learning on images

Histograms (HOG)	Logistic Pogrossion	Object class
histografiis (100)	LUGISTIC REGIESSION	Object bounding box
Feature Points (SIFT)	Perceptron	Dopth
Visual words	SVM	Deptii

Object class

Activation Functions

	Propagation	Back-propagation
Sigmoid	$y_s = \frac{1}{1 + e^{-x_s}}$	$\left[\frac{\partial E}{\partial x}\right]_{S} = \left[\frac{\partial E}{\partial y}\right]_{S} \frac{1}{(1+e^{x_{S}})(1+e^{-x_{S}})}$
Tanh	$y_s = \tanh(x_s)$	$\left[\frac{\partial E}{\partial x}\right]_{S} = \left[\frac{\partial E}{\partial y}\right]_{S} \frac{1}{\cosh^{2} x_{S}}$
ReLu	$y_s = \max(0, x_s)$	$\left[\frac{\partial E}{\partial x}\right]_{s} = \left[\frac{\partial E}{\partial y}\right]_{s} \mathbb{I}\{x_{s} > 0\}$

Source: http://www.marekrei.com/blog/26-things-i-learned-in-the-deep-learning-summer-school/

Loss Functions

Problem Type	Output Type	Final Activation Function	Loss Function
Regression	Numerical value	Linear	Mean Squared Error (MSE)
Classification	Binary outcome	Sigmoid	Binary Cross Entropy
Classification	Single label, multiple classes	Softmax	Cross Entropy
Classification	Multiple labels, multiple classes	Sigmoid	Binary Cross Entropy

Source: https://towardsdatascience.com/deep-learning-which-loss-and-activation-functions-should-i-use-ac02f1c56aa8

Support Vector Machines

Source: http://web.mit.edu/6.034/wwwbob/svm-notes-long-08.pdf

Support Vector Machines: Kernels

Source: https://www.youtube.com/watch?v=3liCbRZPrZA

Neural Network for image classification

Backpropagation - Key Ideas

- Forward-propagation
- Use chain-rule to expand derivatives.
- Save intermediate derivatives (dynamic programming)

https://google-developers.appspot.com/machine-learning/crash-course/bac kprop-scroll/

Convolutional Neural Networks

Convolution Layer

Pooling Layer

Rectified Linear Unit

Key Idea - More Layers

Source: Fei-Fei Li & Justin Johnson & Serena Young

Key Idea - Parallel Layers

Source: Fei-Fei Li & Justin Johnson & Serena Young

Key Idea - Skip Connections

Source: Fei-Fei Li & Justin Johnson & Serena Young

Key Idea - Dropout

Source: Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting", JMLR 2014

Key Idea - Transfer Learning

Source: https://software.intel.com/en-us/articles/use-transfer-learning-for-efficient-deep-learning-training-on-intel-xeon-processors

YOLO - Very Fast Object Detection

Quantization

Non-Maximal Suppression

Source: https://pjreddie.com/darknet/yolov2/

FCN - Semantic Segmentation

Source: http://deeplearning.net/tutorial/fcn_2D_segm.html

Source: https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/

SegNet : Trainable Encoder-Decoder Architecture

Source: http://mi.eng.cam.ac.uk/projects/segnet/

Key Idea - Transposed Convolutions for Upsampling

Source: https://towardsdatascience.com/review-deconvnet-unpooling-layer-semantic-segmentation-55cf8a6e380e

Key Idea - Transposed Convolutions for Upsampling

$(w_{0,0})$	0	0	0 \	T
$w_{0,1}$	$w_{0,0}$	0	0	
$w_{0,2}$	$w_{0,1}$	0	0	
0	$w_{0,2}$	0	0	
$w_{1,0}$	0	$w_{0,0}$	0	
$w_{1,1}$	$w_{1,0}$	$w_{0,1}$	$w_{0,0}$	
$w_{1,2}$	$w_{1,1}$	$w_{0,2}$	$w_{0,1}$	
0	$w_{1,2}$	0	$w_{0,2}$	
$w_{2,0}$	0	$w_{1,0}$	0	
$w_{2,1}$	$w_{2,0}$	$w_{1,1}$	$w_{1,0}$	
$w_{2,2}$	$w_{2,1}$	$w_{1,2}$	$w_{1,1}$	
0	$w_{2,2}$	0	$w_{1,2}$	
0	0	$w_{2,0}$	0	
0	0	$w_{2,1}$	$w_{2,0}$	
0	0	$w_{2,2}$	$w_{2,1}$	
0	0	0	$w_{2,2}$	

Source: http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html

Summary

Source: http://www.asimovinstitute.org/neural-network-zoo/